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Abstract: An important type of basic functions named basis spline (B-spline) is provided a simpler approximate and more
stable approach to solve problems in optimal control. Furthermore, it can be proved that with special knot sequence, the B-
spline basis are exactly Bernstein polynomials. The approximate technique is based on state variable is approximate as a
linear combination of B-spline then anon linear optimization problem is obtained and the optimal coefficients are calculated

using an iterative algorithm. Two different examples are tested using the proposed algorithm.
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1- Introduction

The optimal control problem (OCP) is to obtain a control function that minimizes or maximizes
known performance index governing by the system state equations together with the constraints. Their
applications appear in many disciplines, economics, management, and engineering [1-3].

The basic OCP consists of three elements, first, the mathematical model of the controlled system
that is either differential equation, integral equation of partial differential equation. Second, A set of
boundary conditions concerning the value of the state system at initial time. Third, the performance index,
which is minimized or maximized, is expressed mathematically in form of a scalar function.

The following optimal control problems are considered in this work. The optimum performance

index is
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| = fol F(t,x(t),u(t)dr (1)
Subject to the process illustrated by the differential equation on the time interval {0,1}
u(t) = f(t,x(0),x (1) )
with the initial condition X(0) = a (3)
or boundary conditions X(0) =a x(1) =pf (4)

The OCP can be reduced to a mathematical programming problem using either parametrization
or discretization techniques to reduce the OCP to mathematical programming.

The optimal control problems had been studied through many works [4-9]. Their exact solution is
not always exists, so numerical algorithms is the way to solve them. Numerical approaches for treating
(OCPs) are greatly vary in their techniques and complexity, for example, the method of successive
approximations based on Pontryagin's maximum principle is described in [10]. In [11] both direct and
indirect methods are used to solve a viral marking model with optimal control. The direct and indirect
methods are also utilized for treating (OCP) in Growth theory in [12]. Further application of indirect
method is in fluid flow which is control problem in a two dimensional [13]. Also an optimal control
problem with time delayed is solved in [14] based on Pontryagin's maximum principle. Closed form
approximate solution was adopted by [15] for solving linear quadratic (OCP) with the aid of pontryagin's
maximum principle. In addition, estimate solution of Crip (OCP) is presented [16] based on Euler-
Lagrange conditions for more words on numerical solution of (OCPs) can be found in [17-19]. Basic spline
functions are One of the popular basis functions which can be applied in many fields such as in solid state
physics [20].

In this paper, two algorithms are considered to solve the problem described by Eqns. (1-4) based
on B-spline functions to find an approximation solution to problem Eqns. 1 and 2 with the condition Eq. 3
and the second algorithm is to solve problem Eqns. 1-2 with the boundary conditions Eq. 4. The (OCP) is
then converted to non—linear optimizations problem using state parameterization technique. The basic
spline or B-spline in the mathematical subfield of numerical analysis is a spline function that has minimal
support with respect to a specified degree and in computer aided design as well as computer graphic the
spline function are represented as linear combination of B-spline with a set of control points. The basic
spline is generalization of Bernstein polynomials with specific control points. Bernstein polynomials are an

important basis functions that can be utilized in approximate the solution in various areas of mathematics.

2- The Goal and Organization of the Article

The first purpose of this paper is to discuss the state parameterization and show how it can be
utilized in systematic way. The second purpose is to present the reformulation method of the optimal
control problem into a mathematical programming problem with the help of basic spline functions. The

third purpose is to derive an explicit algorithm for approximating the performance index.
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For all of these objectives a numerical method to solve the special optimal control problem,
named linear quadratic optimal control problem (LQOCP), by directly converting it into a mathematical
programming problem. To this end the state parameterization method is applied based on the Bernstein
polynomials or B-spline with specific control points, therefore the OCP is converted into a mathematical
programming problem which can be solved simply . The advantages of this numerical method are: there is
no need to integrate the system state; the OCP is converted into a small mathematical programming
problem.

The organization of this paper is: in section, the basic formulation of B-spline is described then the
relationship between Bernstein polynomials and basic spline is devoted in section 3. Section 4 reports our
methods by considering two algorithms and illustrates the accuracy of the proposed two algorithms by

giving some examples in section 5. Some conclusions are listed in section 6.

3- The Definition of Basic spline [21]
Suppose that an infinite set of knots {T; } is prescribed as
W< T o <T <7 <71 <7, <.. (5)
Then, the higher order of B-spline can be generating depending on the set of knots Eq. 5, in the
following way

Bs, Bs,
Ll(T)Jr(er—r)L‘l(r) where n>1

Bs; n (r)= (T—Ti ) (Ti LT ) (z'i a1 — T +1) (6)

Particular cases for the B-spline basic when T = (TO,Tl) thatis T_3,T_», T_q tend to word
toTgand Ty, T3, T4 tendtoword T1 if Tg = 0 and t; = 1 then Eq. 6 will be
Bs; ,(z)=7Bs; , ,(r)+(—7) Bs (r) for -k<i<O0and k=1,2,3

i+1,n-1 (7)
4- Reduction B-spline basis functions to Bernstein polynomials

The basic spline is considered as generalization of Bernstein polynomials and they can be shared
in most of their geometric and analytic properties. This fact is illustrated through this section.

Consider the following parametric knot values T1

0 i<n+1
7, =|1—n n+1<i<n
1 i>n

where T€{0, 1} andi € {0, 2n + 1}, this means that
[z, 7, 7,L 7, 7,4, 7,,,]=[0 O OL O 1L 1 1]

Now, form = 1, one can obtain the first order B-spline using Eq. 6
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— relr,7,)
Bs (T)_ Tin T
i1\7)=
iz 7 telr,,.1.,)
i+1""i+2
T2 Tin

with the aid of Eq. 8, we can get the knot points T, T1, T2, T3
[TO 71 Ty T3]=[O 0 1 1]
Hence

Bsi (7)=B,(r)+ B, ()

T—T,
. relr,, )
(2R
BOI(T)_ T, —7T
: relz.7,)
where L™h
T—T.
- re[n,1,)
L=
Bll(r)z T, —T
3 relr,.7,)
and Lh

Using Eq. 9in Eqns. 10 and 11, yields
By;(t) =1—71and Bj;(7) =7
BSO.l(T):ﬂO(l_T)+ﬂ1(T)

Therefore

Eq. 13 represents Bernstein polynomials of the first order

(11)

(12)

(13)

(10)

Similarly, one can prove that B-spline of nth order is Bernstein polynomials of order 11 with the

parametric knot points
[TO T4 Ty ... Tn+1] == [O 0 O.. O]

and T4z Tnts - Ton Tona] = [1 1

In this case the B-spline function can be written as:

C1 1]

— [75:741)
Te|\T:,T:
_ 1"+l
HES I
T n—T
1+2
—re e[t 4.7, 5)
_ i+1'"i+2
fiv2 70
T -7
Bs,,(7)= '+E Te[ri+2,ri+3)
L I )
M
T -7
i+n+1
I —r 7 €lin Tign 1)
i+n+1 “i+n
where
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Bu(r)=(-7)"
Byu(r)=rl-2)""
By, (r)=7*(L-2)""?
M

B, (r)=1"

which is Bernstein polynomials of order n and can be rewritten as
n

Bs;, (7)=B,,(r) =Y 8B, ()
i=0
n ) ; .

where By, (7) = (l) Tl(l — )"t 0<i<n

n n!
where (l) = 1)1 r e [0;1)

5- The Principle of the State Parameterization with B-spline

The algorithm (SP — BS),

To obtain an optimal performance value J(.) for problem (1-2) with Eq. 4, can follow
These steps

Step 1: choose €> 0

Step 2:letn=1,put X1 () = ayBSy1(?) + a;Bs;1(7)

where Qy = X9 =% and a; = x; = s

uy (7) = f(1,%,(2), %,(7)), set 3= J(x1())

Step3:setn = 2, X,(7) = ayBsy, (1) + a1 Bs12(T) + a,Bs,, (1)

where @y = X(0)and a; = x;(1)

Uy (1) = f(1,%2(7), %2 (1)) , et 3= J(x2())

Step 4 set N — n+ 2 put X, (7) = ayBsyn(T) + a;Bspn(T) +
k=1 QB (1)

where Ay = Xoand a, = x;

Un (1) = (7,20, (1), % (D)) seta™= J (%, ()

Step 5:1f |0, — Op—1| >€ then go to step 3, otherwise , stop

The algorithm (SP — BS),
In order to solve problem (1-2) with Eq. 3, the following step3 are considered
Step1:lett = 1, state with approximate X1 (?) = agBsy,(7) + a;Bs;1(7)
where Qg = Xog = ¢

w (1) = f(T: x1 (1), X1 (T))Set o'= J(x: ()
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Step3:set = 2,X,(7) = agBSy2 (1) + a1 Bs1,(1) + a,Bs,, (1)

where @y = X,(0)

U (1) = f(T; x2(7), X, (T))» set 02= J(x2(.))

Sep 4 set n— n+2 pu  X,(T) = ayBsy,(T) + a1 Bsy, (1) +
k=1 QB (1)

where @y = X,

Un (1) = f(7, %, (1), % (7)) sera™= J(x,(.))

Step 5:1f |Gy, — Op—1| >€ then go to step 3, otherwise stop

6- Application Examples

The effectiveness properties of the proposed technique are illustrated through the following given

example.
Example (1)
The proposed method in this example is applied to the following problem
= [, (x(®? + u(0)?)dt (16)
subject to u(r) = x(1) (17)
and boundary conditions X (0) = 0,x(1) = 0.5 (18)
By using aIgorithm(SP — BS); an approximate solution Xl(T) is considered as initial
approximation X1 (7 ) = a¢Bsy,(7) + a;Bs;1(7) (19)
Using the conditions in Eq. 18, one can get the parameters dg and @4 as Ay = 0 anda; = %
Hence, X1 (7) = % T (20)
Using Eq. 17 to get U4 (7 ) = % (21)

Then put Eqns. 20 and 21 into Eq. 16, yields
—j1<1 2+1>d = (0.333333
J = . 41' 2 T=0.

The second approximation to XZ(T),uZ(T)and the corresponding optimum value of [ is
given by
2 1 2
x,(7) =a1(2T — 27 )+ET
u,(7) = 2a,-4a, % + 7
22a,*  17a;, | 23

15 30 60
170 . . .
Thevalueaq = 38 'S minimize J,

This leadsto /] = 0.328598
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The third approximation to x3(7),u3(7 )and the corresponding optimum value of J is given

by

1
X3(T) = (3(11 _3a2 +E> 1-3 + (3(12 _6(11)72 +3a27

3
ug(‘[) = (9(11 - 9a2 +E> TZ + (6(12 - 12a1)T + 3a2

9a12+51a2a1 4a; |, 9a,* 29a,% 17

7 70 7 7 35 35
202
Thevalue 4y = ——
1419
400 . . . .
a, = is m|n|m|ze],

1419
This leadsto /] = 0.328259

The above results can be compared with the following exact solution
x(t)=A(e" —e "), u(r)=A4(e" +e ")

where A=

T

2(e2-1)
and Jorqer = 0.3282588214

By using aIgorithm(SP —BS), , the stopping criteria(|Je1 — Jnl < 1 X 10_6) is

satisfied after three iterations that is when n=3 and the value of the performance index ] = 0.328259

is obtained.

Example (2)
The objective of the second problem is following quadratic optimal control problem
minj=~ [ (D)2 + u(r)?)dt (22)
subjectto X(7) = x(7) + u(r) (23)
with initial condition X(O) =0 (24)

Here, Eqns. 23 and 24 with Eq. 22 is solved using algorithm(SP — BS)Z, the results of
approximate are summarized as follows

x(T)=(1-T)+a; T

w()=a, (1+17)-71
J(a) = J(0.25) = 0.25

Second approximate

x, (1) =127+ 1)+ a,(2 T — 27%) + a,7?

X,(T) =2 + 21+ a,(2 — 41) + 2a,t1
U,(7) =12 —2a, 1>+ a,1? — 1+ 2a, — 2a,7+ 2a, T

70 53
J@y, ay)=)(—,—2)=0.194296

187’187
Third approximate
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x3(7) =131+ 312 =13+ a;3t+ 612 —373) + a,(372 - 373) +
ast3
x3(7) =(3 + 6T —31%)+a,(3 + 127 — 972) + a, (6T — 97%) + 3a;1?
uz(7) =(2+3t+3t3)+a;3—-97t+3t2+3t3) +a,(67T—6T% +
373) + a3 (3 + 37?)
J(@1, 8z, a5)= ](150528694’ ;jg;;}:;) =0.192932

The obtained approximated results can be compared with the following actual solution

J2e

x(7) = 0.010039 ¢ V¥ +0.989961 V2,

u(*) = 0.010039(VZ + 1)e V=~ 0.989961(vZ — 1) V%

and Joxact = 0.192932

By using algorithm(sp — BS)Z , the stopping criteria(l]n_l_1 _]nl <1Xx 10—6) is
satisfied after three iterations that is when n=3 and the value of the performance index J =

0.192932is obtained.

7- Conclusion
An accurate algorithm for solving optimal control problem governed by ordinary differential

equation with the both initial condition or boundary condition is proposed in this paper based on the state
parameterization technique. The idea of this approach is to approximate the state variables by a basic
spline functions and the control variables are determined from the state equations. Examples are included
to confirm the efficiency of the algorithm The following points are concluded:

- There is no need to integrate the system state equation.

- Three is few number of unknown parameters

- The system state and the conditions are satisfied directly.
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