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Abstract: In this paper, numerical spline method is presented with collocation two parameters for solving systems of multi-
dimensional stochastic differential equations (SDEs). Multi-Wiener's time-continuous process is simulated as a discrete
process, and then the mean-square stability of proposed method when applied to a system of two-dimensional linear SDEs
is studied. The study shows that the method is mean-square stability and third-order convergent when applied to a system
of linear and nonlinear SDEs. Moreover, the effectiveness of our method was tested by solving two test linear and non-
linear problems. The numerical results show that the accuracy and applicability of the proposed method are worthy of

attention.
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1. Introduction.

Until recently, many studies ignored random effects models, due to the great difficulty of finding
solutions to these models. But now, stochastic differential equations play an important and prominent
role in multiple fields after the tremendous technological development in industrial and scientific
applications and their wide uses in modeling random phenomena, and they occur in the system of
differential equations that are affected by random noise, and we mention, for example, in the economics
(finance, Interest rate, stock prices), population growth, physics (fluid particles, thermal noise), control
science (signal processing, tuning, filtering), medicine (number of cancer cells, number of people with
epidemic disease), biology, and mechanics , Etc. Unfortunately, obtaining analytical solutions for such
models is not available in most cases. Therefore, researchers are interested in developing numerical
methods to simulate analytical solutions with discrete solutions.

Unfortunately, in many cases analytic solutions are not available for systems of stochastic
differential equations, for these reasons, searchers numerical methods are developed to solve such
systems [2, 3, 4], developments of Rung Kutta methods from various stages [5,9,10] discussed the
numerical solutions of SDEs. Linda et al [6] introduced a comparison of three different stochastic
population models with regard to persistence time. Baccouch, B. Johnson [7] develop a high-order
discontinuous Galerkin method for solving SDEs of It6 type driven by Wiener processes. Bayram et al [8]
studied the Euler-Maruyama (EM) and Milstein methods, and then to numerical solution is approximated
using Monte Carlo simulation for each method. Haghighi & RéBler [1], constructed a class of split-step
double balanced methods for the approximation of solutions of autonomous stiff SDEs. In this paper,
spline collocation method for solving systems of multi-dimensional SDEs is proposed. In Section 2, the
solution method is formulated. Mean-square stability (MS-stability) and error estimation for solution

method are presented in Section 3-4. Numerical results are reported in Section 5.

Definition 1. (m-Dimensional Wiener Processes).

A stochastic process (W (t)),., W :R, = R"is an m-dimensional Wiener process (also called

m-dimensional Brownian motion), if it satisfies the following; for all /= 1,2,...m the stochastic process
(W, (t))pis a one-dimensional ~ Wiener  process  withW (t) = (W, (t),....W, (t))". Let
W (t) = (W, (t),-.., W, (t))" be an m-dimensional Wiener process and a system of diagonal stochastic

differential equations can be formulated:

(dX,, ] T66X)] [o@X) 0 A 0 Jdw,

Xz | f,(t,X) sl O g,(tX) A 0 | dW,, 0
M M M A 0] M M |’

X [f.6X)] | 0 0 A g,tX)|dW,,
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e X = (X Xp K X )T
2. Formulation of the Solution Method

A spline collocation technique is presented for solving a system of stochastic differential
equations given in relation (1) by It"o’s formula. Denotingt, =Kk dt,k =0,1,...,nthe grid points of the
uniform partition of [0, 7] into subintervals I, =[t,,t..,], k=01..,n=1, and dt=T/n is the
constant step size.

Let X, (t)e R, there is then a Hermite polynomial of degree at most third:
Si(t)=g*(1+ 28)S;  + g% Si[,lg +&°(L+ Zg)si,kﬂ -&%¢ Si[,llz+1'
teft,t.,], k=01..n-1 (2)

where

SH =hdS,  (t,), SH., =hdS; .. (t), k=01...,n-1,i=12..,m
g=(t-t)/dh, &=1-¢ €[0,1], and dS; 4(0), S; 4 (0), initial values can be found from

the starting conditions of the problem.

Differentiating the polynomial (2) with respect to t we get
ds; (t) =6(E* —€)S; +(3E° —2E)S}} +6 (E-E°)S, ., +(3E°*-28) SE.,  (3)
Generally, the grid determine s nspline polynomials Si’k ),1=12,...,nare given as

Si,o(t)l te[0, t],
M

Si(t)=1Si(t), telt t.l
M

Si,n—l(t)’ teft,,,T]

which fulfills the conditions
SeNR; S;(t)=X;(t), k=01,..,n
e S (t)=Sut), k=12..n
o dS;, (t)=dS, (), k=12,..,n-1
Let us know two collocation points

tk+zj =1, +2z; dt, =12, (4)

ino subintervals |k = [tk ,tk+1], k =0,1LK ,n-1, with two collocation parameters are given as
O<z,<z,=1 )

Now by applying Hermite 's spline polynomials (2)-(3) with collocation points (4)-(5) into the

system of stochastic differential equations (1), we get
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_dsl(tk+zj)_ _fl(tk+z S_ )_
dS,(t,,, ) | | f (tk+Z Sy J) it
M | M
_dSm (tk+Zj)_ f (tk+z ' k+zj)
gl(tk+2j ’Sk+zj) 0 B A 0 dw,(t,)
+ 0 g2(tk+zj’sk+zj) A 0 dW, ()
M A 0 M M |
O 0 A g (tk+zv k+zj) dWm(Tk)

j 21,2, k = O,l,.--,n_ll
where

k+z (S (tk+z ) S (tk+z )K m(tk-;_Zj ))T and tk+zj E]tk’tk+l]'F1'2‘

The system (6) is rewritten in the matrix form, so we get the following iterative relationship:

AS,.,=BS, +hF, +G,W, , k=01,..n1, )
where
A O A O B O A O
_|OA:O0 M _ |O:B: 0 M
A: e \ ..... , B: R (8)
M:O 0 :0 M O O O
O A O A O A O B
A 6(z, —27) 3z} -2z)) , o)
6(z, —2%) 322-2z,)
B 6z,(1-z,) 4z,-3z7-1) (10)
6z,(1-2,) 4z, _322 _1)

gl(tk+zj’ k+z ) 0 A 0
0 gZ(tk+z ’Sk+zj) A 0 .
Gy = j=12,
M A O M
0 0 A O (tk+z ’Sk+zj )
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K K fl(tk+zl’s_k+zl) _dWLk
1k+1 1,k _

s gl f, (tk+21 , Sk+zl) dw,
1k+1 1,k M M

i’ o oy Sien) | | AW
K+l = SE-E(H. ’Sk = Sg'il( , Ifk — m k+Zl’_k+Zl ,W= dWm,k
M M f1('[k+l’sk+1) 1k
Skt S,k Fa(ta Sicsa) dW,
S[ll] S[ll] M M

L S mk+1l | | ¥mk | _ dW

L fm (tk+1’Sk+1) | LY mk

Noting that O is 2X2 zero matrix , 6 is mXm zero matrix and §, A are 2mX2m matrices,
dw, , = Jat 8,y . h =dtstep size and 3;, are N(0, 1) independent normally distributed numbers for
~1,2,...,.m.

Notice that System (7) is always solvable for 0 <z, <z, =1, and the vector of unknowns §k+l
can be determined into subintervals |k =[tk,tk+1], k=0,1LK ,n-1 because the matrix A given by

relation(9) always has an inverse where we have

Det(A) =6z,(1-2,) #0.

3. M S-Stability of method for two-dimensional linear SD systems

Numerical MS- stability is studied by applying proposed method to test problem:
dX X X 0 [ dw
t]_ ;ii tdt + Hi A 1t a1)
dYt ﬂ“zYt 0 zqut sz,t
with the following initial conditions
X (to = O) _ Xo (12)
Y (t, =0) Yo

Applying the spline approximations (2)-(3) with two collocation points (4)-(5) into the problem

where A, 1 for 21,2 real constants.

(11)-(12), we obtain the linear system
{dsl(tkﬂj)}{xlsl(tkﬂj)}dt{plsl(tkﬂj) 0 }{dwl,k}
A5, (ty,) |~ | 2S2(tesz,) 0 MoS, (s | AW, | (13)
j=12, k=01,..,n-1

with the initial conditions S, (t, = 0) =X, S, (t, =0) =Y, ,

where tk+2j =t + Z; dt, j =12, dWl’k :\/a Sl'k, dWZ'k :\/a Bz'k, 61'k and 82"( are

N(0,1).

By applying spline approximations to the system (13), we have the following iterative system:
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M1§k+1 =M, Sk, k01,1 (14)

M | A-Mh C-pVhC 0 |
' 0 A-x,hC—p,v/hC | ")
- 15

B—A,hD—p,~/hD 0
M, = _
0 B—%,hD-p,vhD |
where the two matrices A4, Bare (9 6 D,C, D are given as follows:

22(3- 221) Z (z -222-1 —z7,(1- zl)2 (8
22(3-2z,) 12 (22—1) 322—222—1 ~-2,(1-12,)°

e z12 (3-2z,) 8, zlj(zl -1) 62*}
:zz (8-2z,) 6, z5(z,-1)5,, o)
5_| Gz -2z -1, —zl(1—zl)282|k}
(823 -22;-1)8,, -2,(1-2,)*8,, |
and two vectors
Skt = (Syy0 St S SHL)T, S = (S, 1,8, ST
Furthermore, we rewrite the recurring relation (14) as
Sk = R(N, Ay, 1y Ay, 11,) S (18)
where
R(hAL, 1A, 10,)=M"M,, (19)

it is 4X4 a matrix. Note that the frequency relation (19) is important as a basis for defining the
stochastic stability of our spline method applied to the test system (11).
And using the concept of the expected value with the mean of squares, we have:

E[dW,,]=0, E[dW.21=h, E[5, ]=1,i=12

Thus, from the system (18), we obtain the iterative relation:

Y_k+1 =R (02,0, 1,) Y_k (20)
where
Eslz,k+1 ESlzk
- |EGHEL)?| | E(SEY?
Yer=| gg2  p YT g
2, k+l 2.k
|E(S3h)° | LE(S3R)? ]

The matrix R(h, Ay, 1y, A5, 10,) = E[R' (0, Ay, 1y, Ay, 1, )R(N, AL, 1y, Ay, 11,)] is called MS-

stability function of proposed spline method.
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Definition 2.[2] If ||.||,, is vector norm on R* then a matrix norm A= (a;) on the set of real

4 x 4 matrices corresponding to the vector norms is defined in | as

4
1AL = max || Ax = rgg}élai,- |
Definition 3. [2] The numerical method is said to be mean-square stable for h, A, p;, A,, 1, if

under matrix norm||. ||, provided that || R(h,A,, 1, A, 1,) [<1.
Without loss of generality, we put A=A, =A,,u=p, =p,, and for real p=2Ah and

g= u\/ﬁ , the MS-stability function of this method is given by
R(p.a) = E[R'(h, 2, 1)R(h, 2, )]

Locating the Boundary of the MS-stability Region
The region Qsm defined by

Qg ={(p, 9); IIR(p, 9) |I<1 ,p,q € R}
is called the MS-stability region of our spline method, , where p:Kh and quJﬁ. If
collocation parameters z, =4/5,z, =1 this method possesses MS-stability region lies inside the

shaded circle given in Fig. 1.

13

14 12 0 2 4

Fig. (1) MS- stability region of spline method
Corollary1: The spline method defined by the iterative relation (20) is MS-stable if
Il R(p,q) |< 1 for the collocation parameters z, = 4/5,z, =1 and stepsize h =0.99.
Moreover, if the standard values A, =2, 1, =2, A, = 2,1, =—2 are selected then the stability

matrix for the method is given as follows:

0.72063  0.022743 0 0

— _10.0446942 0.691573 0 0
k(0.99,2,-22,-2) = 0 0 0.720630 0.022743]
0 0 0.0446942 0.691573
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so, ||R(0.99,2,—2,2,—2)]|,=0.743373, we conclude according to definition 3 that our
proposed method is SM-stable.

4. Error Estimation for solution Method
Definition 4 : [1] A discrete time approximation §k is said to be mean-square convergent with
order p>0 to the solution )?k of SDE (1) at time t, if there exist two constants >0 and &, > 0, such that
(E| X, =S, [?)"* <C h” foreach he(0,3,), especially, the constant C is independent of 4.
Assuming that X(t),Y (t) € R, the solution functions of a system of two equations (11)-(12),
and Sl,k , Sz,k the spline approximations for them, then we obtain the formula for the local truncated error

of the method proposed by the system (13) as follows:

1
EIX (t.)—S: (o)l ——h®2a-1)% | X ()|
| El@x L) -ds, @ )P | | 2P
Ele_Sk |2: k+1 1 k+12 — 1 0 ,
ETY (t.)—S, (t.y) | th(ZQ—l)ZHY(“)(tk)HZ
EJ(dY (t,.,)) ~dS, (t,.,) 0
therefore, we find that
(E| X, -5, )2 =7—12(2a—1)M he, (21)

where M = Max{|| X t) II'Y “ (t,) |
Furthermore, global truncated error is estimated at end of the interval, after n2steps as follows

e(h) =Ch?,

}.,and o € (0,1) is stability parameter.

C =i2(20L—1)M

where
Corollary 2: According to definition 4 our method is mean-square convergent with order third for

any one uses the collocation parameters z, =4/5,z, =1, stepsize h=0.99.

5. Numerical Results

We test the effectiveness and efficiency of our method by applying it to the solution simulation of
three test systems of stochastic differential equations, linear and nonlinear. To calculate the numerical
convergence rate for the proposed spline method we will use the notationse, =E|S) —S2 |,
k=1,...,N, where ekN indicates the mean absolute error at point t, =k h in [0,7], and SkN spline solution by
using our methods, for step size /= 7/N. The rate of numerical convergence is computed by
_Ln(ey" /ey

Rate, = ———~= =~
“" Ln(N,/N,)

where N;=N, N>=2N. All numerical results are obtained from computer program designed by

Mathematicall.
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Cary

Problem 1[7]
Let our first test be the solution of the stiff linear stochastic differential system according to the

following Ito formula:
dX —-a a\(X b 0\ X.dWw,
Y= " ldt+ U telo],
dy, a -—-a)ly, 0 —-a YtdWZ’t
with the initial conditions

X(0) = 1, Y(0) =2.

The exact solution of this equation is given by

(XIJ:Pexp(w(t» 0 P{X(O)J, P:F,l:i(l 1)
Y 0 ep @) \YO V(1 -1

pi(t):(a+%b2 +a)t +bW(t).

This system is stiff if ais large, we choose the parameters as a= 100 and /= 0.5.In Fig.2 - 3, we plot,
respectively, the spline solution by our method for Xand Vin the time interval [0,1] with N=2 /7. We
summarize in Table 1 the mean absolute error and the convergence rate in the spline solution for our
method applied to find Xand Y respectively, with stepsize /= 0.0625 in [0,1]. In Fig. 4 - 5, we plot the
mean absolute error in the spline solution for Xand Ywith stepsize #=0.0625 in [0,1].

Table (1) The mean absolute error and the convergence rate for Problem 1 by our method on

uniform meshes having A=2/7,in [0,1].

Mean absolute error of X Rate of Mean absolute error of Y Rate of
eli\‘ . convergence e:‘ . convergence
0.0625 0.00189964 0.00016373 3.53629 0.0004952 0.0000168 4.881478
0.125 0.00467074 0.00052474 3.15399 0.0003304 0.0000125 4.724563
0.1875 0.00739552 0.00019171 5.26964 0.0003258 0.0000114 4.829307
0.25 0.00042481 0.00002845 3.90009 0.0032737 0.0000951 5.10531
0.3125 0.00165938 0.00011311 3.87484 0.0046302 0.0002691 4.10484
0.375 0.00102205 0.00040274 4.66548 0.0035094 0.0001707 4.36091
0.4375 0.00567039 0.00035948 3.97946 0.0083339 0.0003371 4.62736
0.5 0.00534861 0.00042318 3.6598 0.0058793 0.0001968 4.90082
0.5625 0.00344965 0.00040929 3.07522 0.0006598 0.0000214 4.94549
0.625 0.00418766 0.00005399 6.27726 0.0074968 0.000125 5.89571
0.6875 0.00470726 0.00038984 3.59392 0.0007571 0.0000299 4.65937
0.75 0.00837453 0.00034640 4.59549 0.0007728 0.0000415 4.219023
0.8125 0.00204799 0.00031846 411174 0.0009227 0.0000536 4.105018
0.875 0.00230086 0.00017391 3.72570 0.0063864 0.0002348 4.76496
0.9375 0.00199561 0.00018614 3.42236 0.0024243 0.0001428 4.08550
1. 0.00434319 0.00052076 3.06006 0.0033437 0.0003372 3.81726
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Fig. (2) Simulation of the spline solution (dashed curve) of X, with the exact solution

(solid curve) for N=2/7.
Splin Solution Y
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Fig. (3) Simulation of the spline solution (dashed curve)of ¥, with the exact solution
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Fig (4) Mean absolute error in the proposed X-spline solution with 4#=0.0625.
Abs Error of Y
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0001 ¢

02 04 06 08 10

Fig (5) Mean absolute error in the proposed ¥-spline solution with /=0.0625.

Problem 2
The second is the biological system, we consider a two-species competition model with per capita
birth and death rates given by
b, (t)=0.84, b,(t) =0.90 (birth rates)
d, (t)=0.40+0.01X (t) +0.022Y (t), d, (t)=0.75+0.0067Y (t) + 0.005X (t),

(death rates for both population types)
The resulting deterministic model is given as follows
dXx(t
2O _0-d,01x 0

a (1) , te[0,T] (23)
arTE [b, (t)—d, (®)]Y (t)

with initial conditions X(0) =15, ¥(0) =15.

The corresponding model of (23) is nonlinear stochastic differential system:
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dX (t) dW (t)

=[b, (1) — d; (] X (£) +y/[by (8) + d; (]X () — 2

m_[b ()—d, (OTY (t) + /b, (1) + d, (O] (t) —2>

with initial conditions X(0) =15, Y(0) =15.

dW (t)

In Figs.6-7, we draw, simulation of the spline solution for two population types X, and ¥,
respectively ,and in Fig. 8, we draw simulation of spline solution for the two types X, Y together, and in Fig.
9 ,we draw spline simulation of X-¥'plane and all of these Figs. in [0,100], with N=2 A 7.In Figs 10-11, we
plot the mean absolute error in the spline solution for Xand Yrespectively, with #=0.0625 in [0,100].In
Fig. 12, the spline solution with the exact solution is plotted for A/=2/ 7in [0,100].In Figs.13-14, we plot
the numerical solution by the Range-Kutta method of second order[2] for Xand Yand comparisons with

the exact solution, with A=0.112in [0,28].

Table (2) Simulation of the spline solution of both types Xand ¥
by our method for N=2 /7, in [0,100].

Spline solution by our method Range-Kutta method of second order
X Y X Y
0.0 15 15 15 15
3.125 14.008 13.8529 14.8401 12.5107
6.25 14.3995 14.1862 14.154 12.1837
9.375 14.2504 14.0041 11.6939 10.681
12.5 14.9743 13.3134 16.748 8.91756
15.625 15.0193 12.8704 21.2727 6.76912
18.75 14.5809 12.2507 22.0999 5.90549
21.875 15.9646 11.2563 27.1034 4.17056
25.0 17.9682 10.4333 32.1457 2.90323
28.125 19.4173 10.3487 35.6097 0.794911
31.25 20.3699 9.73913 e
34.375 21.3635 946446 | -
37.5 21.688 95503 e
37.5 21.688 95503 | - e
43.75 24.5395 76585 e
46.875 26.0916 630343 e
50. 28.604 579438 - e
53.125 30.7365 546369 0 - e
56.25 31.8209 480047 e e
56.25 31.8209 480047 - e
62.5 34.5477 3.71191 e e
65.625 35.9306 310666 00 - e
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Spline solution by our method Range-Kutta method of second order

X Y X Y

68.75 37.1074 267578 e e
71.875 39.1055 1.9141 e
75.0 40.2974 1.55361
78.125 40.809 129919 - e
81.25 40.4512 112202 e
84.375 40.8439 1.04651 | e
87.5 42.3191 0.827401 e
90.625 42.848 0.743619 e e
93.75 43.2406 0.646742 e
96.875 43.6822 0.518487 |
100. 43.5953 0476432 |

Numerical Spline Method for Simulation of
Stochastic Differential Equations systems

Splin Solution X

20 40 60 &0 100

Fig. (6) Spline solution for the first population type X, for N=2/7, h=25/32.

Splin Solution Y

20 40 60 80 100

Fig. (7) Spline solution for the second population type ¥, for N=2/A7, h=25/32.
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Splin Solution X and Y

nna—

20 40 60 80 100

Fig. (8) Spline simulation of both Xand Ytypes, for N=2/7, h=25/32.
Splin Solution | X, Y|

15 2 » 0 > 0
Fig. (9) spline simulation of X-¥plane, for N=27, h=25/32in [0,100].
Abs Error of X

@
0010 |
0008 |
0006 L @ [l
- ]
0004 |
]
0002
1 0 1 Iy OLI 1
7 bt Tr
20 40 60

Fig. (10) The mean absolute error of the X-type spline solution for #=25/32 in [0,100].

Numerical Spline Method for Simulation of (124) Mahmoud, Al-Wassouf, Ehsaan

Stochastic Differential Equations systems



8 2021 sasasd = gl ) 2380 - el alaal) - Al g Aobaad) g Aol sladl s - la i g o slall gy o) Al

Abs Error of Y

0003 H

000l

Fig. (11) The mean absolute error of the X-type spline solution for #=25/32in [0,100].
Splin and Exact Solutions X and Y

Py 1 ) & 100
Fig. (12) Comparison of the spline simulation by our method with exact solution of X, ¥of Problem

2forN=2/77, h=25/32.
Runge! Kutta 2 Solution X and Y

5 10 15 20 25 30

Fig. (13) The numerical solution by Runge Kutta method of Problem 2 with /=25/32in [0,30].
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Splin and Exact Solutions X and Y

5 10 5 ® % o
Fig. (14) Comparison of the numerical solution by Runge Kutta method with exact solution of X, ¥
of Problem 2 with, A=25/32in [0,30].

Notations: As a result of solving Problem 2, we notice from Figs 6-8 that the first population type
Xgrows and flourishes while the second type, Vdies out and becomes extinct. Table 2 shows that the first
population type Xgrows and increases, and when t = 87.5, the population exceeds 42 with mean absolute
error, it is not more than 0.01, while the second population type Vis likely to start extinction, when at time
t = 87.5, the population decreases to 0.827401, with an mean absolute error equal to approximately
0.004, and this suggests either the absence of any person or the presence of one person at most. To
compare our proposed spline method with the Rung-Kutta method of second order [2], we note in Fig. 12
that our method simulates an exact solution to a very large extent from its beginning at 7= 0 to its end at ¢
=100, while the numerical simulation using the Rung-Kutta method did not reach the end of the solution
and only reached 7= 28 approximately, and it failed completely after that, as is evident in Fig. 13. On the
other hand, Fig.14 shows the divergence of the numerical solution from the exact solution by the Runge-

Kutta method to a large extent and thus the inability of this method to solve such problems.

Problem 3 [11]
Consider the following stochastic equation systems:
dX 0\ X b 0 X, dw.
= Clt+ [ CM tel0,2]
dy, 0 a, \Y, 0 b, Y, dWZ,t
where the exact solution is given by
1 1
X (t) = Xo exp[(al - E blz )t + bl Wl,t ]1 Y(t) = Yo exp[(az - E bz2 )t + b2 WZ,t] '

Our technique is applied to solve this problem by choosing &, =1,b, =2,a, =2,b, =1,
Xo =LY, =2 and 7=2.We summarize in Table 3 spline solutions of X, Yand the absolute errors by our

method for /=0.015625. In Fig.15-16 are plotted discretized Wiener process paths W, ;and W, ;, for

Numerical Spline Method for Simulation of
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N=128. In Fig.17-20, the spline solution with exact solution of X, Yand the absolute errors are plotted by
our method for N=128.
Table (3) The absolute error of Problem 3 by our technique for /=0.015625, in [0,2].

Absolute Error of X Absolute Error of Y

Solution Spline X

Solution Spline Y

0.125 0.000311715 0.000388923 1.09510691828 2.687403726853
0.25 7.66351E-6 0.000589369 0.9180893240681 3.160085971482
0.375 0.000228364 0.000211111 0.5517547354758 3.144583677972
0.5 0.000206802 0.000192638 0.4220985401796 3.5314143667242
0.625 0.00022566 0.000587206 0.1818453653124 2.9755365896614
0.75 0.000181033 0.000990974 0.0941543431987 2.7487205058159
0.875 0.000165342 0.00100775 0.0827310462057 3.308091419314
1.0 0.000113249 0.00144636 0.0424617989635 3.042599099767
1.125 0.0000872678 0.00173041 0.0269440375661 3.111437393041
1.25 0.0000805738 0.00188729 0.0232726707386 3.7124195227918
1.375 0.0000698558 0.00209339 0.0179580653648 4.1863976636582
1.5 0.0000558092 0.00239371 0.0127350690205 4.525745781895
1.625 0.000039456 0.00279965 0.0078661309381 4.566064861148
1.75 0.0000235546 0.00329813 0.0042141739197 4.2907552225622
1.875 0.0000341351 0.00315654 0.0067132561969 6.9533030930411
2.0 0.0000411178 0.00243028 0.0084866098119 10.037500178815

Numerical Spline Method for Simulation of
Stochastic Differential Equations systems

WienerProcess W1

Fig. (15) Discretized Wiener Process path W, ; , for A=128.
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WienerProcess W2

0.4+
0.2

-4 t
1 0.2¢
1 04r

Fig. (16) Discretized Wiener Process path W, ;, for N=128.
Spline Solutionand Exact Solutionof X
..... IR R . T — t
0.5 1.0 1.5 2.0

Fig. (17)The spline solution e e e with the exact solution — for N=128.

Spline Solutionand Exact Solutionof Y
Y

10

: : : -t
05 10 15 20

Fig. (18) spline solution e e e with the exact solution— for N=128.
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AbsError | XI S1
0.00035 |
0.00030 ¢
0.00025 ¢
0.00020 ¢
0.00015
0.00010
0.00005

‘ ‘ ‘ —t
05 10 15 2.0

Fig. (19) Mean absolute error in the proposed X-spline solution with £=0.015625.

AbsError |Y! S2.

0.0030 |
0.0025 |
0.0020 ¢
0.0015 ¢
0.0010 ¢
0.0005 ¢

L . L L L t
0.5 10 15 20

Fig. (20) Mean absolute error in the proposed ¥-spline solution with /=0.015625.

6. Conclusion.

A two-point spline collocation method is presented for the numerical solutions of systems of
stochastic differential equations in both linear and nonlinear states. The analysis of mean-square stability
and convergence showed that our proposed spline method, when applied to a test model of stochastic
differential equations systems, was mean-square stable and convergent of the third order. Fig's 2-20, and
the results of calculations of mean absolute errors and the order of numerical convergence included in
Tables 1-3 show that our method succeeded in simulating and matching the solution to a large extent in
the linear and nonlinear cases of the three tested problems.

Given the success of the proposed technique in simulating the solutions of some stochastic
differential equations systems, we recommend the following:

® Development of similar spline techniques for simulating the solution of systems of neutral
stochastic differential equations.
® Study of mean-square stability analysis of spline collocation techniques for stochastic differential-

algebraic systems.
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